Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species.

نویسندگان

  • M-H Chen
  • E B Nelson
چکیده

Composts are known for their suppressive properties toward many different seed- and root-infecting pathogens and diseases. Although disease and pathogen suppression induced by composts is believed to be mediated by microbial activities, the nature of the microbial species and processes responsible for suppressiveness remain unknown. We demonstrated previously that seed-colonizing microbial consortia from leaf compost could explain the observed levels of Pythium ultimum-induced damping-off suppression on cotton. The aim of the present work was to determine whether seed-colonizing microbial consortia could explain Pythium damping-off suppression in municipal biosolids compost on three different plant species. Significant levels of disease suppression were observed on cucumber, wheat, and pea at water potentials of -2 kPa. The suppression of damping-off on cucumber and wheat could be eliminated by autoclaving the compost prior to sowing. High levels of suppressiveness were expressed both on cucumber and on wheat seed surfaces within 8 h of sowing. However, the expression of damping-off suppression on the surface of pea seeds was inconsistent and highly variable. Our results demonstrate that compost-induced suppression of P. ultimum damping-off of cucumber and wheat can be explained by the microbial consortia colonizing seeds within 8 h of sowing. These results further suggest that disease suppression in composts is related to microbial species that interact with the pathogen in its infection court and not in the bulk compost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities.

Leaf composts were studied for their suppressive effects on Pythium ultimum sporangium germination, cottonseed colonization, and the severity of Pythium damping-off of cotton. A focus of the work was to assess the role of fatty-acid-metabolizing microbial communities in disease suppression. Suppressiveness was expressed within the first few hours of seed germination as revealed by reduced P. ul...

متن کامل

Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola.

Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythi...

متن کامل

Compost Tea as a Container Medium Drench for Suppressing Seedling Damping-Off Caused by Pythium ultimum.

ABSTRACT Compost tea is being used increasingly in agricultural production to control plant diseases. However, there has been limited investigation relating disease control efficacy to various compost tea production methods, particularly compost tea produced with active aeration and additives to increase microbial population densities in compost tea. Aerated compost tea (ACT) and nonaerated com...

متن کامل

The Pythium suppressive ability of Glomus intraradices in cherry tomato propagation

This experiment aims at establishing the ability of the endomycorrhizal fungus Glomus intraradices to suppress the plant pathogen Pythium ultimum in cherry tomato. A study published in Canadian Journal of Plant Pathology in 1994 showed that Glomus intraradices suppresses Pythium ultimum in Tagetes patula (french marigold) (St-Arnaud, Fortin, Caron, & Hamel, 1994). Pythium ultimum and other Pyth...

متن کامل

Improving field establishment of safflower in soils infected by Phytophthora drechsleri and Pythium ultimum

One of the major field constraints to seed production in safflower has proven tobe soil born pathogens, Phytophthora drechsleri and Pythium ultimum. In order toevaluate the efficiency of a field-laboratory selection method to improve resistanceof safflower against soil born pathogens, Ph. drechsleri and P. ultimum, a two-yearinvestigation was conducted. The results showed that selection is an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 98 9  شماره 

صفحات  -

تاریخ انتشار 2008